首页> 外文OA文献 >Hot embossed polyethylene through-hole chips for bead-based microfluidicdevices
【2h】

Hot embossed polyethylene through-hole chips for bead-based microfluidicdevices

机译:用于珠型微流控设备的热压纹聚乙烯通孔芯片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications forces cost considerations to be kept low and throughput high. As such, a materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 minutes with the ability to scale up 4x by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing.
机译:在过去的十年中,人们对将微流体系统转换为现实世界的临床实践的兴趣不断增长,尤其是用于现场护理或患者附近的环境。尽管微流体的最初制造进展主要涉及硅和玻璃的蚀刻,但对于现场护理用途而言,这些材料的按比例缩放的经济性无法修改,因为一次性测试应用迫使成本考虑因素保持在较低水平且产量较高。因此,需要更符合医护点需求的材料基础。在本手稿中,讨论了从各向异性刻蚀的硅片衍生的热压花通孔低密度聚乙烯组件的制造。这种半不透明的聚合物易于灭菌和回收利用,可为荧光测量提供低背景噪音,并且比通常用于微流体应用的其他热塑性塑料(例如环烯烃共聚物(COC))成本更低。为了由这种用于微流体的替代材料制造通孔微芯片,描述了一种使用高温,耐高压模具的制造技术。该铝基环氧模具,用作压花的正型主模具,浇铸在硅晶片中刻蚀的金字塔形凹坑阵列上。讨论了在浇铸环氧树脂和PDMS浇铸环氧树脂之前对晶圆进行表面处理的方法,以保护硅晶圆以备将来使用。对于变化的压花温度,观察到聚乙烯厚度的变化。本文所述的方法可以在不到30分钟的时间内快速制造20个一次性单次使用的芯片,并具有通过同时使用多个模具将尺寸扩大4倍的能力。如最近开发的Programmable Bio-Nano-Chip那样,当作为支持多孔微珠传感器的平台进行耦合时,此微珠芯片系统可以达到0.3 ng / mL的心脏生物标志物C反应蛋白检测极限,从而证明了该方法与即时医疗测试中的高性能,现实世界的临床测量兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号